MATH 1A - QUIZ 4 - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1) (3 points) Using the definition of the derivative, calculate the derivative of $f(x)=$ $\cos (x)$. You may use any limits we talked about in section.

Hint: $\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\sin (x) \sin (h)-\cos (x)}{h} \quad \text { (By the hint) } \\
= & \lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\cos (x)-\sin (x) \sin (h)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\cos (x)}{h}-\frac{\sin (x) \sin (h)}{h} \\
= & \cos (x)\left(\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}\right)-\sin (x)\left(\lim _{h \rightarrow 0} \frac{\sin (h)}{h}\right) \\
= & \cos (x)(0)-\sin (x)(1) \quad \quad \text { (By the 'special limits' we talked about in class) } \\
= & -\sin (x) \quad \\
& \operatorname{Hence} f^{\prime}(x)=-\sin (x)
\end{aligned}
$$

(2) (1 point) Is the function $f(x)=\sqrt{x}$ differentiable at 0 (from the right)? Explain.

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}-0}{x}=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{x}=\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{x}}=\infty
$$

Since $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$ does not exist, f is not differentiable at 0 .
(3) (2 points; 1 point each) Evaluate the following limits:

Note: Again, $-\infty$ points for using l'Hopital's rule!
(a)

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}+x^{2}+1}}{x^{3}} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}\left(1+\frac{1}{x^{4}}+\frac{1}{x^{6}}\right)}}{x^{3}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}} \sqrt{1+\frac{1}{x^{4}}+\frac{1}{x^{6}}}}{x^{3}} \\
& =\lim _{x \rightarrow-\infty} \frac{\left|x^{3}\right| \sqrt{1+\frac{1}{x^{4}}+\frac{1}{x^{6}}}}{x^{3}} \\
& =\lim _{x \rightarrow-\infty} \frac{-x^{\not 又} \sqrt{1+\frac{1}{x^{4}}+\frac{1}{x^{6}}}}{x^{\varnothing}} \\
& =\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{1}{x^{4}}+\frac{1}{x^{6}}} \\
& =-\sqrt{1+0+0} \\
& =-1
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}-1}{(\ln (x))^{2}-3} & =\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}\left(1-\frac{1}{(\ln (x))^{2}}\right)}{(\ln (x))^{2}\left(1-\frac{3}{(\ln (x))^{2}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\left(1-\frac{1}{(\ln (x))^{2}}\right)}{\left(1-\frac{3}{(\ln (x))^{2}}\right)}=\frac{1-\frac{1}{\infty}}{1-\frac{3}{\infty}} \\
& =\frac{1-0}{1-0} \\
& =1
\end{aligned}
$$

Note: From now on, you're allowed to use differentiation formulas!
(4) (1 point) Find $f^{\prime}(x)$, where $f(x)=\frac{e^{x}}{\cos (x)}$

$$
f^{\prime}(x)=\frac{e^{x} \cos (x)-e^{x}(-\sin (x))}{(\cos (x))^{2}}=\frac{e^{x}(\cos (x)+\sin (x))}{(\cos (x))^{2}}
$$

(5) (3 points) Find the equation of the tangent line to $f(x)=\sqrt{x}$ whose x - intercept is -4

The equation of the tangent line to f at a point a is $y-f(a)=f^{\prime}(a)(x-a)$, which in this case becomes $y-\sqrt{a}=\frac{1}{2 \sqrt{a}}(x-a)$

Now we want that tangent line to have $x-$ intercept -4 , that is we want $(-4,0)$ to be on that tangent line, hence we get:

$$
\begin{aligned}
0-\sqrt{a} & =\frac{1}{2 \sqrt{a}}(-4-a) \\
(-\sqrt{a})(2 \sqrt{a}) & =-4-a \\
-2 a & =-4-a \\
-a & =-4 \\
a & =4
\end{aligned}
$$

Hence, the equation of the tangent line becomes: $y-\sqrt{4}=\frac{1}{2 \sqrt{4}}(x-4)$, that is: $y-2=\frac{1}{4}(x-4)$, or $y=\frac{x}{4}+1$ (either of those last 2 answers is fine)

